



# ULTRA-LOW POWER, HIGH PERFORMANCE IMAGING SYSTEM-ON-A-CHIP with CMOS ACTIVE PIXEL SENSORS

by

Dr. Bedabrata Pain

Center for Space Microelectronics Technology Jet Propulsion Laboratory California Institute of Technology

June 3, 1997



## **ACTIVE PIXEL SENSOR TECHNOLOGY**



Active pixel sensor (APS) is a second generation solid-state sensor technology featuring with one or more transistors per sensor element



• *Integrate a micro-CCD in each pixel* 

- Use CCD detector for good QE
- Use buffer amplifier for low noise
- Use source-follower for high gain uniformity
- Use TX & RST gate as anti-blooming
- Random-access X-Y readout



- CMOS APS made possible by continuously shrinking minimum feature size (0.7x reduction per year)
- Pixel size ~ 15 20 D (D is the design rule)



## **CMOS ACTIVE PIXEL SENSOR**



#### VERSATILE, HIGH-PERFORMANCE, LOW-POWER, INTEGRATED SENSOR TECHNOLOGY



- - -Enable miniaturization: 10x less mass and volume
  - -Simple digital interface; Standard power supply; Low chip pin count; More reliable
- Excellent Image quality
  - -comparable to CCD in noise, quantum efficiency, linearity, uniformity, dynamic range
- **Ultra-low power**: 100x less than state-of-the art
- Multi-function multi-use:
  - -Digital camera-on-a-chip; windowing; multi-resolution; High range; On-chip image processor
- Large format, high resolution: 1024x1024 with digital readout; small pixel size (10 µm)
- **High technology leverage:** Use CMOS technology
  - -Rapid scaling; Utilize advances in VLSI; Easy access; Low cost and fast delivery











• Parallelism improves speed over serial analog readout

## Requirements:

size: narrow pitch (10-20  $\mu m$ ); max. 5 mm ADC length

size requirement relaxed if ADC is multiplexed among multiple columns

low power: 50 to 150  $\mu$ W/ADC; 0.1 - 1  $\mu$ W/kHz

modest speed: 1K x 1K requires 33KHz minimum speed for 30 Hz

frame rate





#### WHY IS CMOS APS LOW POWER



- CONVENTIONAL IMAGER SYSTEM
  - Eliminates high power chip-to-chip communication
    - no high speed analog communication (Power ~ frequency 2)
    - minimal large voltage swing digital I/O (Power ~ volt 2)
  - •On-chip CMOS circuitry for timing & control enables ultra-low power
  - Lower capacitance than CCD: leads to lower drive power
  - Use of parallelism reduces power by eliminating parasitic loads

ON-CHIP INTEGRATION, SYSTEM MINIATURIZATION, LOW POWER GO HAND-IN-HAND



## LARGE FORMAT CMOS APS





2.5 sec. exposure

- 1024x1024 format
- Pixel pitch: 11.9 µm
- Digital output; no timing and control
- Column-parallel single-slope
   ADC
- ADC resolution 10 bits
- Low power: 50 mW
- On-chip ramp-generator
- Needs off-chip bias



# APS FEATURES & PERFORMANCE



|                                         | Available   | best results | near future      |
|-----------------------------------------|-------------|--------------|------------------|
| Array size                              | 256x256     | 1024x0124    | 1024x1024        |
| Pixel pitch (µm)                        | 20          | 11           | 8                |
| Technology (µm)                         | 1.2; CMOS   | 0.6; CMOS    | 0.35; CMOS       |
| Fill factor                             | 25%         | > 25%        | 10%              |
| Peak QE: PG/PD                          | 25%/60%     | 30%/60%      | > 70%            |
| Micro-optics                            | no          | no           | yes              |
| Power supply                            | 5V          | 3.3V         | 3.3V             |
| Saturation                              | 1.2V        | 1.0V         | 1.5V             |
| Conversion gain (µV/e)                  | 10          | 20           | 30               |
| Noise (e-r.m.s.)                        | 13          | 5            | <2               |
| Dynamic range (dB)                      | 76          | 80           | 120              |
| Full well (e-)                          | 120,000     | 300,000      | 50,000           |
| Dark current (pA/cm <sup>2</sup> ) @ RT | 500         | 150          | < 50             |
| Speed (Mpix./sec.)                      | < 1         | 1            | < 10             |
| Power (mW/100kpix.)                     | 3           | 3            | < 2              |
| Fixed pattern noise                     | < 0.1 % sat | < 0.1 % sat  | < 0.1 % sat      |
| Anti-blooming                           | yes         | yes          | yes              |
| Windowing                               | yes         | yes          | yes              |
| Rolling snap shutter                    | yes         | yes          | no               |
| Snap-shot shutter                       | no          | no           | yes              |
| On-chip timing                          | yes         | no           | yes              |
| On-chip data compression                | no          | no           | yes              |
| Radiation hardness                      | 1-10 krad.  |              | > 100 krad.      |
| On-chip ADC                             | no          | yes          | yes              |
| ADC resolution (bits)                   |             | 10           | 14               |
| ADC power                               |             | 1 μW/kHz     | $0.1  \mu W/kHz$ |



#### MINIATURE APS CAMERA





**Demonstration** camera

- Computer serial interface
- •Uses CC256 chip; **analog** sensor output
- •Works on 5V supply
- Features user programmable windowing, exposure, panning
- Uses FPGA and ADC boards in addition
- •Operable at 8-10 frames/sec.
- •Low power



## Mock-up of Wireless camera

- Will use DICE chip; digital output
- Use off-the shelf comm. chips
- Dimensions: 1 inch cube
- •Low power:

total RX/TX  $\sim$  2 W camera  $\sim$  50 mW sleep  $\sim$  1.8 mW

- Transmit at 2.4 GHz
- Range: 1 k.m.; 2.5 Mbps rate



#### **DIGITAL CAMERA-ON-A-CHIP**



#### HIGH DEGREE OF FUNCTIONALITY

## **DICE CHIP**



Requires only power, Gnd, Clock and one I/O

#### On-chip Timing and Control

- On-chip analog-to-digital converters (ADCs)
- Supports Continuous or Digital Still Imaging
- Fully Programmable Exposure Time
- Programmable on-chip data reduction operations
  - Windowing (electronic panning)
  - Subsampling (electronic zooming)

#### SIMPLE VERSATILE INTERFACE

#### • Complete Digital Interface

- All analog references generated on-chip
- Programmable with single wire
- Supports a variety of Digital Interfaces ex) Serial or parallel output

#### **ULTRA LOW POWER**

- Enters Low Power (mWatts) Idle mode after Digital Still
- Circuits turned off during imaging operation to reduce power



## **IMAGING PERFORMANCE**





# **Chip picture**

#### **Features:**

- Initially 256<sup>2</sup>; designed for 1024<sup>2</sup>;
- •Chip size: 9.3 mm x 11.2 mm
- •Ultra Low power:

20 mW;  $10 \mu\text{W}$  (standby)

• Max. data rate: 10 Mbits/sec.



8 bit image from 256 x 256 DICE



## **IMAGER RESPONSIVITY**





SH time: 280 msec

ADC conversion time: 240 msec

TX: 1 Volt VLN: 5.5 mA ADC Range: 3 V Clock: 500 KHz

Output data rate: 43 Kpix/sec (10 bit serial output)



## **ON-CHIP DATA REDUCTION**





2.5 MHz clock 215 Kpixels/sec VLN: 5.5 mA TX: 1 Volt ADC Range 2.4 V. 10 bits serial output





## **DICE SIGNAL CHAIN**





Integration



# ANALOG/DIGITAL POWER







## **256 COLUMN-PARALLEL ADCs**







## MULTI-FUNCTIONAL ONE-CHIP SMART SENSOR SYSTEM







## **ULTRA-HIGH FOV IMAGER**



Rationale: Large format ultra-high FOV imager eliminates need for scanning enables system miniaturization, vastly reduced system power Great for surveillance purposes

## Approach:

- Use wafer-scale integration to produce large-format 8Kx8K imager
- Use on-chip data reduction methods to ease off-chip communication bottleneck
  - ☐ On-chip DCT/wavelet based image compression scheme
  - □ On-chip motion detection
  - □ On-chip edge-detection: *adjacent pixel difference output; wavlet decompostion*





## **ON-CHIP FOVEAL VISION**



Rationale: Real-time multi-target acquisition and tracking
Autonomous navigation: nano-rovers and robots
Ultra-low multi-use sensor system

## Approach:

- Develop on-chip programmable multi-resolution sensor by pixel averaging in column circuits to enable on-chip foveal vision
- Team with Amherst Systems for foveal vision system development
- On-chip fovea results in:
  - $\Box$  100 *x* reduction in power
  - □ 100*x* improvement in speed for real-time operation
  - □ 10x reduction in mass and volume by eliminating off-chip processor and control
- Large format imager helps in minimal motion of sensor head





Chip with commandable varying resolution





Multi-resolution enables real-time target acquisition



## **SUMMARY**



- CMOS APS presents technology ideally suited for systemon-a-chip applications
- Enables sensor fusion by allowing parallel computing on digital imager data
- Enables on-sensor preprocessing for data-compression and data volume management
- Enables ultra-low power system without sacrificing imager quality
- APS on SOI technology needs to be demonstrated
- APS with low voltage power supply needs to be demonstrated